
Computation of Zero Points with
Weierstraß Iteration in OpenCL1.2

University of Regensburg

Thomas Karl

July 1, 2021

1 Setup

The program computes complex zero points of arbitrary complex polynomials numerically using
Weierstraß Iteration. The procedure is accelerated on GPUs with OpenCL 1.2. Inputs are the
number of polynomials n and its degree d. Let p be the number of cores. The number of polynomials
np that can be computed in parallel is np = bp/dc. If dnp 6= p, some cores remain idle.

Each core computes an initial guess and randomly a complex coefficient for the polynomial. Real-
and imaginary part lie uniformly distributed between two parameters that where also given as user
input. The zero points have to be complex and lie in the initially on a circle in the complex plane.
The radius is the half distance between the parameters.

Each core improves its k-th zero point xk using the iteration,

xi+1
k = xk + polynomial(xi

k)∏d
j=1;j 6=k(xi

k − ζj)
−→ xk i → ∞ (1)

ζj denote all zero points so far. Since a dynamically change of the ζj in each iteration accelerates
the convergence, dataraces can be ignored,

2 Evaluation

The iteration breaks after 10d runs or if for a a user given ε > 0 the equation

max
{

|polynomial(x)|
|x|

}
≤ ε (2)

holds. This iteration is commonly known as Weierstraß-Durand-Kerner Iteration. The zero points
are converted in coordinates in a 1080×1080 pixel image and generated on the CPU in ppm format.
Figure 3 shows an example.

2 Evaluation

For the evaluation of the performance the computation times where recorded and fitted linearly.
Figure 1 shows the comparison of computation times on a CPU and a GPU. The GPU was a Nvidia
GTX 1060, the CPU an Intel i7 8700K 4.8GHz. Using 1280 cores we get a speedup with respect to
the serial program of roughly 70. The latency due to the data traffic reads about 0.5 seconds.

104 105
10−1

100

101

number of polynomials n

co
m

pu
ta

tio
n

tim
e

t
/

se
c.

GPU
CPU

t(n) = 3.298 × 10−6 ·n + 0.146
t(n) = 243.2 × 10−6 ·n + 0.014

Figure 1: Computation times for certain numbers of polynomials.

2

2 Evaluation

In the last step the dependency of the polynomial degree is evaluated (Fig. 2). When the degree is
doubled, for the same number of polynomials twice the number of zero points needs to be computed.
The number of floating point operations and the iterations increase also with the degree. When the
computation times are compared for the same number of zero points (n · d) For degree 8 to 32 the
computation time is almost the same for a larger number of polynomials.

105 106 107 108
10−1

100

101

102

number of zero points d · n

co
m

pu
ta

tio
n

tim
e

t
/

se
c.

degree 32
degree 64
degree 256

t(n) = 10.3 × 10−6 ·dn + 0.15
t(n) = 1.63 × 10−6 ·dn + 0.57
t(n) = 2.23 × 10−6 ·dn + 2.76

Figure 2: Computation times for certain number of polynomials.

3

2 Evaluation

n = 30 × 106, d = 8, imaginary part 1 or -1 n = 30 × 106, d = 8, real part 1 or -1

n = 60 × 106, d = 4, real and imaginary part 1 or -1, n = 40 × 106, d = 12, real part 1 or -1

Figure 3: Graphical representation of zero points in complex plane (1080 × 1080 pixel, ε = 0.0001).
The zero points are distributed on a circle with radius one.

4

	Setup
	Evaluation

