
General Remarks on GZIP Compression
Faculty of Physics

University of Regensburg

Thomas M. Karl

2021

I. GZIP Compression

In this chapter, we describe the Gzip data compression in detail. In particular, the file format
and the Deflate Algorithm are explained. To illustrate the necessary fundamentals of data
compression, we start by introducing information entropy and entropy coding on a theoretical
level. In the following part we discuss the details of the LZ77 and Huffman encoding algorithms,
which are the essential building blocks of the Deflate Algorithm. We describe the Deflate
Algorithm itself and its decompression counterpart, the Inflate Algorithm. The chapter is
concluded with technical details of the Gzip file format.

I 1. Information Entropy and Huffman Trees

I 1.1. Entropy Coding

Entropy coding is an example of lossless data compression. Each character in a given text
is mapped to a sequence of bits. The minimum number of bits that is needed to distinguish
between the characters is determined by the entropy of the text.

Claude Shannon defines the entropy [9] H of a discrete random variable X over a finite set of
characters Z = {z1, z2, . . . , zm}. Let I(z) = − log2 pz be the amount of information one can get
of an event that occurs with probability p. The probability that a character z ∈ Z occurs is
denoted by pz = P (X = z) . The entropy of a character is the expected value of its information,

H1 = E[I] =
∑
z∈Z

pzI(z) = −
∑
z∈Z

pz log2 pz = −
m∑

i=1
pi log2 pi , (I.1)

with pi = pzi
.

1

I 1. Information Entropy and Huffman Trees

The entropy for an arbitrary word w consisting of n characters is defined as

Hn = −
∑

w∈Zn

pw log2 pw , (I.2)

where pw = P (X = w) is the probability of an occurrence of a word w. As n → ∞ the overall
entropy reads,

H = lim
n→∞

Hn

n
. (I.3)

In order to calculate a normalized measure for a discrete distribution, the maximum entropy of
the system can be used assuming that pi are equally distributed. Let N = |Z| be the number
of characters in a source X over the alphabet Z. If

pi = 1
N

∀ pi ,

the maximum entropy reads

Hmax = −
N∑

i=1

1
N

log2
1
N

= log2 N . (I.4)

Normalizing the entropy with the maximum value of the same system yields

H

Hmax
= −

|Z|∑
i=1

pi · log2 pi

log2 N
= −

|Z|∑
i=1

pi · logN pi ≤ 1 . (I.5)

The following example explains entropy more intuitively. The roman alphabet consists of
N = 26 characters. The maximum entropy is Hmax = log2 26 ≈ 4.7 per character. Since we
chose 2 as basis of the logarithm the unit of the entropy is a bit. Replacing the probabilities
with the actual relative frequencies of the letters in a standard English text (excluding blanks
and other characters) yields a slightly smaller entropy H ≈ 4.061. The overall redundancy

1For more information see F. G. Guerrero [4].

2

I 1. Information Entropy and Huffman Trees

divided by the entropy N · (Hmax − H)/H ≈ 4.08 gives the number of characters that yield
such redundancy. Hence, four letters of the alphabet are actually unnecessary.

Naturally, we cannot simply delete four characters and expect that the meaning of a text does
not change. Instead we could define a new alphabet with only 22 characters in such a way that
the original alphabet can be replaced without information loss.

Entropy coding is a generic term for representations with the intention of reducing information
entropy. An algorithm which tries to find an encoding that reduces the entropy is by definition
a lossless compression algorithm2. In the given example we could reduce the size of an English
text to 14% without information loss.

A prominent way and historically one of the first to compute an entropy coding is with the
help of Huffman trees.

I 1.2. Huffman Coding

Huffman Coding is a form of entropy coding developed by David Huffman in 1952 [6]. It
assigns codewords with variable length to a fixed number of characters in a source. The idea
is to represent characters that occur more frequently with codewords of smaller bit length. In
order to decode the codewords unambiguously they have to fulfill the Kraft–McMillan inequality
and have to be free of prefixes. The first condition is a necessary and sufficient condition for
the existence of a prefix code [1]. Prefix code or free of prefixes means that no codeword can
be the beginning of another one.

The algorithm uses a k-nary tree as representation of the code. A k-nary tree is a tree with
exactly k children per node. The leaf nodes represent the characters while the path from root
to leaf represents the codeword. The tree is constructed from leaf to root (bottom-up). The
unique mapping from character to codeword and vice versa is called codebook.

The following must be known a priori:

• Z: the set of characters that are to be encoded

2Such an algorithm does not necessarily minimize the entropy.

3

I 1. Information Entropy and Huffman Trees

• pz: probability with which a character z ∈ Z occurs

• C: the set of characters that form the codewords

• N = |C|: cardinality of C

The tree is constructed as follows. Construct a node for each character by assigning the relative
frequency (the probability) of that character. Repeat the following procedure to construct a
full tree: Choose N subtrees with the smallest probabilities that was assigned to their root
nodes. Prioritize the subtree that is less deep. Combine the two subtrees to a single tree by
connecting them to a new, additional node. Assign the summed probability of the two subtrees
to the new node.

In the second step, codewords are assigned to the original characters unambiguously. Start by
assigning a code character in C to every connection from a specific node to its child nodes.
Then the codewords for a specific character, which is represented by a leaf node, is given as
follows. Beginning at the root, traverse the tree down to the character. The codeword consists
of the visited codesigns in that order.

The encoding itself is rather simple. Read a character and retrieve the codeword from the
codebook. Simply replace each character with the corresponding codeword.

In the following, we present an example for the application of Huffman encoding.

The following text shall be encoded:

a a c a b a b b c d .

A straight-forward way to represent four different characters with log2 4 = 2 bits per symbol
(the maximum entropy per character) is by numerating them from 0 to 3 with binary numbers.
A naive encoding would yield

a a c a b a b b c d
00 00 10 00 01 00 01 01 10 11 .

The set of characters is Z = {a, b, c, d}. We choose the binary code as codealphabet, i. e. the
set of codesigns is C = {0, 1} and N = |C| = 2. The relative frequencies of the characters are

4

I 1. Information Entropy and Huffman Trees

pa = 0.4, pb = 0.3, pc = 0.2 and pd = 0.1 .

The construction of the Huffman tree,

yields the codebook,

a: 1

b: 01

c: 001

d: 000.

The original text can be encoded as

a a c a b a b b c d
1 1 001 1 01 1 01 01 001 000 .

Since the calculation of the relative frequencies can be very time consuming, an estimated tree
can be provided in advance. Such a so-called static Huffman tree can be set up empirically
e. g. by analyzing a specific file type and assuming that these relative frequencies are sufficient
estimates for all files of that kind.

The average codeword length is

l =
∑
x∈X

pxlx . (I.6)

Additionally, l has a lower and an upper bound [10]

5

I 1. Information Entropy and Huffman Trees

H(X) ≤ l ≤ H(X) + 1 . (I.7)

This implies that a codeword is on average represented at least with the same number of digits
than its amount of information, but at most with only one more.

The Huffman representation in the example encodes each character with

l = 0.4 · 1 + 0.3 · 2 + 0.2 · 3 + 0.1 · 3

= 0.4 + 0.6 + 0.6 + 0.3 = 1.9

bits. The entropy is

H(X) = −(0.4 · log2 0.4 + 0.3 · log2 0.3 + 0.2 · log2 0.2 + 0.1 · log2 0.1)

= 0.529 + 0.521 + 0.464 + 0.332 = 1.85

bits per character. The Huffman coding reduces the length of the input to 1.9
2 = 95% , whereas

the maximum that can be achieved with entropy coding would be 1.85
2 = 92.5%.

Huffman Coding gives in general high compression ratios when the probabilities are unequally
distributed. This is usually true for source code, where special characters like {, ; or # are much
more likely to occur than e. g. spaces. However, when the distribution is close to a uniform one,
almost no compression can be achieved, since the entropy is close to the maximum.

Decoding

In order to decode characters the Huffman tree has to be traversed simply in the opposite
direction. With each incoming bit the tree has to be followed beginning at the root node until
a leaf node is reached. The codeword can be replaced with the original character. Along with
the encoded output the Huffman tree has to be stored additionally.

6

I 2. Redundancy Elimination with LZ77

I 2. Redundancy Elimination with LZ77

The main disadvantage of entropy coding is the lack of redundancy elimination. Redundancy
is the occurrence of a sequence in a text more than once. Since X was defined (in I 1.1)
as a discrete random variable (implying that it has no memory of previous characters), it is
impossible to take such repetitions into account. For example, in an English text one can easily
replace frequent words with a special character. With that, probably, a better compression than
with minimum entropy coding will be achievable. Based on this principle, Abraham Lempel
an Jacob Ziv developed an algorithm for lossless data compression in 1977 (LZ77) [12]. It is
historically the first method that makes use of repetition of sequences and can be applied to
any data.

Mathematically speaking, a LZ77 factorization x is a decomposition of a sequence of characters
into non-empty sequences w1, w2, . . . , wk that obey the rules:

• x = w1w2 · · · wk ,

• for each wj with 1 ≤ j ≤ k ,

– wj is a new character α, which is not in w1 · · · wj−1 or

– wj is the longest sequence that is in w1 · · · wj at least two times.

The algorithm generates a sequence of triples from which the original text can be reproduced.
A triple for a specific factor wj is of the form of (pos,len,λ), where

• pos is the position of the previous occurrence of wj in x (or 0 if none exists),

• len is its length (or 0, if wj is a new character),

• and λ is the first character to be considered a mismatch.

The triples are also called symbols. The position is always relative to the right or left border
of the buffer, which is defined by the implementation. This has also to be considered when the
output is decoded.

The length of the book is usually not allowed to exceed a specified size due to technical rea-

7

I 2. Redundancy Elimination with LZ77

sons. A longer codebook also yields longer times for searching prefixes. Therefore, common
implementations often use a sliding window, which restricts the codebook and the length of
the examined input sequence (preview buffer). In each step of the algorithm an input stream
is shifted into the preview buffer, where the length of the shift is the length of the matching
sequence plus an additional one. Therefore, redundant triples are avoided. Otherwise, a new
character would always be added as a single one.

The following example demonstrates the application of the LZ77 algorithm to compress the
sequence aacaacabcabaaac. An additional end-of-file (eof) character is attached in order to
signalize the algorithm to stop.

Table I.1 shows the procedure using a preview buffer of length 10 and a codebook of length 12.
Each line corresponds to one step of the algorithm. The right column is filled with the output
symbols after the step is completed.

12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 output
a a c a a c a b c a (0,0,a)

a a c a a c a b c a b (1,1,c)
a a c a a c a b c a b a a (3,4,b)

a a c a a c a b c a b a a a c eof (3,3,a)
a a c a a c a b c a b a a a c eof (12,3,eof)

Table I.1.: Visualization of LZ77 compressing the sequence aacaacabcabaaac eof. The codebook is on
the left side, the preview buffer on the right. Matching sequences found in the codebook are
colored in green, the corresponding sequences in the buffer red. An overlap of both is marked
yellow. The character that terminates the matching sequence is marked purple. [8]

1. The first character is always unknown. The output is (0, 0, a). The sequence is shifted
by one into the codebook.

2. The sequence a (red) in the buffer matches a sequence in the codebook at position 1
(green). The character ending the matching sequence (the mismatch character) is c

(purple). The length of the matching sequence is 1. Therefore, the output is (1, 1, c) and
the input is shifted until c is in the codebook.

3. The sequence aaca can be found in the codebook. The matching sequence at position
3 and the sequence to be shifted are overlapping (yellow). The length of the matching
sequence is 4, the first mismatch is b. Therefore, the output is (3, 4, b).

8

I 2. Redundancy Elimination with LZ77

4. The second a terminates the matching sequence. The output is (3, 3, a).

5. The last step is straight forward. The eof character is treated exactly as any other
character. In addition, it signalizes the algorithm to abort compressing.

The final encoded output is (0, 0, a)(1, 1, c)(3, 4, b)(3, 3, a)(12, 3, eof). The entire codebook can
be searched for the longest match in order to guarantee the best compression. Some implemen-
tations of the LZ77 algorithm like Gzip provide options to terminate the steps sooner (search
intensity) in order to decrease computation time, e. g. if a match of a specified minimum length
is found.

The computational complexity is Θ(N), where N is the length of the input sequence, since
the sizes of the preview buffer and the codebook are fixed. Searching matches in a very short
sequence does not yield a high contribution for the overall computation time.

Decompression

The original text can be reconstructed only from the triples without usage of a codebook. All
triples are unique. The search intensity of the decompression does not affect the decompression.
The complexity is linear, since the number of reconstructions is in the worst case exactly the
length of the original text (Θ(N)). Implementing the decompression is much simpler and shall
be illustrated on the basis of the previously computed symbols (tab I.2).

input 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
(0,0,a) a
(1,1,c) a a c
(3,4,b) a a c a a c a b
(3,3,a) a a c a a c a b c a b a

(12,3,eof) a a c a a c a b c a b a a a c eof

Table I.2.: Visualization of LZ77 decompressing the sequence
(0, 0, a)(1, 1, c)(3, 4, b)(3, 3, a)(12, 3, eof).
There are no buffers necessary. The same color coding as in table I.1 applies. [8]

1. (0,0,a) The first entry is always trivial. It is simply replaced with the first character.

2. (1,1,c) Beginning at position 1 in the sequence decoded in the previous step, the first
character is duplicated and a c is attached.

9

I 2. Redundancy Elimination with LZ77

3. (3,4,b) Beginning at position 3 a sequence of four consecutive characters is duplicated.
Since only three exist, the fourth character to be duplicated (yellow) is again the character
at position 3. Thereafter, the b is attached and the decoded sequence reads aacab.

4. (3,3,a) Three letters at position 3 are duplicated and attached with an additional a. The
sequence reads caba.

5. (12,3,eof) Three letters at position 12 in the previous step are duplicated. The eof char-
acter signalizes the algorithm to abort decompressing and is ignored. The sequence reads
aac.

The entire output after decompression reads aacaacabcabaaac, which was exactly the input
sequence for the compression algorithm.

10

I 3. Deflate Algorithm

I 3. Deflate Algorithm

The basic idea behind the Deflate Algorithm is the combination of two different compression
methods. In the first step, the algorithm reduces redundancy with LZ77. In the second step,
Huffman Coding is applied in order to obtain an efficient binary representation. The algorithm
is specified in the documentation [2].

There are three different parameters that must be declared a priori. These properties have a
great impact on the compression ratio.

• Size of the LZ77 codebook: The locating of redundant sequences is more promising for
larger codebooks. However, the computation time also increases. Prominent implemen-
tations like Gzip use 32 KiB.

• Search intensity: The algorithm can either use the first matching sequence of a specific
length or keep going on in order to find longer ones.

• Huffman trees: A static tree can be declared in the beginning. A tree can also be created
dynamically out of the given data. The latter case will probably end up with higher
compression ratios, but induces additional computation time.

Redundancy Reduction

In the specification of the Deflate Algorithm the LZ77 algorithm is not explained in detail.
The document only refers to the IEEE publication of Lempel an Ziv [12] and suggests an
implementation that is not patented. Therefore, many variations of LZ77 are also in use for
implementations of the Deflate Algorithm.

The LZ77 compression is not applied to the entire text, but only to a single block of data
in order to save computation time. The method is often implemented by inserting a special
end-of-block character (eob), which signalizes the LZ77 compression to stop. After one block
is compressed the LZ77 algorithm is repeated with the next block. It is highly recommended
to follow some additional rules.

• The implemented compression algorithm (compressor) terminates a block when it deter-

11

I 3. Deflate Algorithm

mines that starting a new block with fresh trees would be useful, or when the block size
fills up the memory buffer.

• The compressor uses a chained hash table to find duplicated strings.

• The compressor searches the hash chains starting with the most recent strings to favor
small distances and thus take advantage of the Huffman encoding.

An implementation is not forced to obey these rules in order be compliant with the Deflate
specification. One match of an arbitrary sequence consists of a length (ranging from 3 to
258 bytes) and a distance (1 to 32 768 bytes). Such a reference can extend to multiple blocks,
but has to reside within a distance of the size of the codebook in the decompressed data.

Entropy Coding

In the second stage, an entropy coding according to Huffman is applied on the outputted triples.
The Huffman trees for each block are independent of those for previous or subsequent blocks.
The Huffman trees themselves are compressed using Huffman encoding. Note that according
to the specification the Huffman codes in the Deflate format for the various alphabets must
not exceed certain maximum code lengths. There are two additional requirements for Huffman
codes:

1. All codes of a given bit length have lexicographically consecutive values.

2. Shorter codes lexicographically precede longer codes.

The representation of the trees is probably the most complicated part of the specification. Each
type of value (literals, distances, and lengths) in the compressed data is represented using a
Huffman code. One code tree for literals and lengths and a separate code tree for distances are
used. Literals and lengths are merged into a single alphabet. The literal/length tree stores 288
different symbols:

• 0 to 255: character from 0 to 255 in ASCII code,

• 256: end-of-block symbol (eob),

12

I 3. Deflate Algorithm

• 257 to 285: length of 3 to 258 bytes in conjunction with extra bits (example: code 269
can represent with two extra bits 1 + 0b11 = 4 different lengths from 19 to 22),

• 286 to 287: reserved, not in use despite being part of the tree.

The distance tree is defined in a similar way. Depending on the code, it is possible that some
extra bits are read in order to calculate the final distance. The tree consists of 32 different
symbols:

• 0 to 3: distance 1 to 4,

• 4 to 5: distance 5 to 8, 1 bit extra,

• 6 to 7: distance 9 to 16, 2 bits extra,

...,

• 28 to 29: distance 16.385 to 32.768, 13 bits extra,

• 30 to 31: reserved, not in use despite being part of the tree.

For symbols from 2 to 29 the number of extra bits can be calculated as
⌊

n
2 − 1

⌋
.

This representation together with the extra bits is strictly specified [2].

Huffman trees can be defined globally before compression even starts (static) or individually
for each block (dynamic). The difference is described in the following.

static Huffman codes

The Huffman codes for the two alphabets are specified and not stored explicitly in the output
data. The Huffman code lengths for the literal/length alphabet are shown in table I.3 .

13

I 3. Deflate Algorithm

Lit Value Bits Codes
0 - 143 8 00110000 through 10111111

144 - 255 9 110010000 through 111111111
256 - 279 7 0000000 through 0010111
280 - 287 8 11000000 through 11000111

Table I.3.: Code lengths for the literal/length alphabet

dynamic Huffman codes

The literal/length code appears before the distance code. For even more compactness, the code
length sequences themselves are compressed using a Huffman code. The alphabet for code
lengths is as follows:

• 0 - 15: Represent code lengths of 0 - 15,

• 16: Copy the previous code length 3 - 6 times. The next 2 bits indicate repeat length (0
= 3, ... , 3 = 6),

• 17: Repeat a code length of 0 for 3 - 10 times (3 bits of length),

• 18: Repeat a code length of 0 for 11 - 138 times (7 bits of length).

A code length of zero indicates that the corresponding symbol in the literal/length or distance
alphabet will not occur in the block and should not participate in the Huffman code construction
algorithm. If only one distance code is used, it is encoded using one bit, not zero bits. In this
case, there is a single code length of one with one unused code. One distance code of zero bits
means that there are no distance codes used at all (the data is all literals). [2]

Format

Finally, we can discuss the format of the Deflate stream. A complete stream consists of a
series of compressed or uncompressed blocks. The first 3 bits of each block have the following
meaning. The first bit is a boolean number that states if the following block is the last one.
The next two bits denote the method of coding:

14

I 3. Deflate Algorithm

• 00: uncompressed block, size between 0 and 64 KiBytes ,

• 01: compressed block, encoded with a predefined (static) Huffman tree,

• 10: compressed block, encoded with its own (dynamic) Huffman tree,

• 11: reserved, an occurrence in compressed data is treated as error.

The implementation may decide on its own which of the three methods should be used for the
given input.

If the input was compressed, the utilized Huffman trees have to be provided. The static
trees are usually hard-coded by the (de)compressor. Dynamic trees appear in a compact form
immediately before the compressed data for that block and directly after the header in the
following format:

• 5 Bits: HLIT, number of literal/length codes - 257 (257 - 286)

• 5 Bits: HDIST, number of distance codes - 1 (1 - 32)

• 4 Bits: HCLEN, number of code length codes - 4 (4 - 19)

• (HCLEN + 4) x 3 bits: code lengths for the code length alphabet in the order: 16, 17,
18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15

These code lengths are interpreted as 3-bit integers (0-7). A code length of zero means
the corresponding symbol (literal/length or distance code length) is not used.

• HLIT + 257 bits code lengths for the literal/length alphabet, encoded using the code
length Huffman code

• HDIST + 1 bits code lengths for the distance alphabet, encoded using the code length
Huffman code

All code lengths form a single sequence of HLIT + HDIST + 258 values.

In both static and dynamic cases the actual compressed data is stored with an additional
end-of-block character (symbol 256).

15

I 4. Inflate Algorithm

It was already mentioned that it is up to the compressor when to terminate the compres-
sion procedure, i. e. the maximum size of the output data is not specified. The size for an
uncompressed block is not allowed to exceed 64 KiBytes.

The length of an uncompressed block is stored in the next two bytes after the 3-bit header and
its one’s complement in the consecutive two bytes.

When one block is completed, the next block is compressed until the end of the input is reached.

I 4. Inflate Algorithm

In this section, we describe the decompression method which corresponds to the Deflate Algo-
rithm. It does not require knowledge about block sizes or numbers, codebook lengths or search
methods. An implementation must only provide the static Huffman tree used for compression.
A pseudo code is already suggested in the specification [2].

do
2 r ead b l o ck heade r from i n p u t st ream .

4 i f s t o r e d wi th no compre s s i on
s k i p any r ema in i ng b i t s i n c u r r e n t p a r t i a l l y

6 p r o c e s s e d byte
read LEN , NLEN

8 copy LEN by t e s o f data to output

10 o t h e r w i s e
i f compressed wi th dynamic Huffman codes

12 r ead r e p r e s e n t a t i o n o f code t r e e s

14 l oop (u n t i l eob code r e c o g n i z e d)
decode l i t e r a l / l e n g t h v a l u e from i n p u t st ream

16
i f v a l u e < 256

18 copy v a l u e (l i t e r a l by te) to output st ream

20 o t h e r w i s e
i f v a l u e = eob (256)

22 break
o t h e r w i s e (v a l u e = 2 5 7 . . 2 8 5)

16

I 5. GZIP File Format

24 decode d i s t a n c e from i n p u t st ream
move backwards d i s t a n c e by t e s i n the output st ream

26 copy l e n g t h by t e s from tha t p o s i t i o n to the
output st ream .

28 end loop
w h i l e not l a s t b l o ck

30

Listing I.1: Inflate Algorithm in pseudocode

I 5. GZIP File Format

The Deflate Algorithm has many parameters the compressor has to define. The most prominent
tool that implements the algorithm is the Gzip Compression Utility, which is installed by default
on most Linux distributions [5]. It was developed by Jean-loup Gailly and Mark Adler to replace
the Unix compress utility [11]. A specific Deflate method is defined in Gzip, which writes
compressed data to specified files (.gz) [3]. Figure I.1 shows the flowchart of the entire process.
As in any compressed file, a header is required in order to store some meta information, as,
for example, original file name or time stamp. This data is not relevant for the decompression
and is not discussed further here. For more information see appendix ??. Immediately after
the header the entire Deflate stream is stored. The next four bytes are supposed to store a
cyclic redundancy checksum of the original data according to ITU [7]. After decompression,
the checksum can be calculated again and compared with the provided one in order to check
the integrity of the data. The last 4 bytes store the length of the original file.

With four bytes the maximal number for the length is 232 bytes = 4 GiBytes. However, com-
pressing larger files is possible. As a consequence this will result in a wrong file size and in a
negative compression ratio. Decompression is still possible, since the decompressor does not
need knowledge about the original file and simply aborts when all data is processed. Once the
file is compressed, the original length cannot be deduced from the Gzip file.

17

I 5. GZIP File Format

reduce redundancy
with LZ77 until

memory buffer is filled
try Huffman Coding

with static tree

try Huffman Coding
with dynamic tree

write first bit:
1 if final block

0 otherwise

write next two bits:
00 for uncompressed block

01 for compressed block with static tree
10 for compressed block with dynamic tree

write dynamic tree if needed
write (compressed) data

write end-of-block symbol

reached end of file?

apply compression discard
compression

compression

compression

no compression

no compression

yes

no

START

END

Figure I.1.: Flowchart of Deflate compression according to Gzip. The program reads the input data and
tries to reduce redundancy with LZ77 until the memory buffer provided by the implementation
is filled. The resulting lengths/symbols and distances are encoded using static Huffman trees.
If the resulting compression did not reduce the size, a dynamic Huffman tree is applied. If there
was still no reduction, the implementation discards the result and stores the block uncompressed.
If the block was the last one, a 1 is written to the first bit of the block, else 0. The next two
bit are either 00, 01 or 10, depending on the type of compression. The output data is written
to disc including the dynamic tree if needed. If the first bit was actually 0, the algorithm starts
all over again with the next block until the end of the input is reached.

18

Bibliography

[1] “Data Compression.” In: Elements of Information Theory. John Wiley and Sons, Ltd,
2005. Chap. 5, pp. 103–158. isbn: 9780471748823. doi: https://doi.org/10.1002/
047174882X.ch5. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
047174882X.ch5. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
047174882X.ch5.

[2] L. Peter Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC
1951. RFC Editor, May 1996, pp. 1–15. url: https://tools.ietf.org/html/rfc1951.

[3] L. Peter Deutsch. GZIP file format specification version 4.3. RFC 1952. RFC Editor, May
1996, pp. 1–12. url: https://tools.ietf.org/html/rfc1952.

[4] Fabio G. Guerrero. “A New Look at the Classical Entropy of Written English.” In: CoRR
abs/0911.2284 (2009). arXiv: 0911.2284. url: http://arxiv.org/abs/0911.2284.

[5] Gzip - GNU Project - Free Software Foundation. Accessed: 2021-01-21. url: https:
//www.gnu.org/software/gzip/.

[6] D. A. Huffman. “A Method for the Construction of Minimum-Redundancy Codes.” In:
Proceedings of the IRE 40.9 (Sept. 1952), pp. 1098–1101. issn: 2162-6634. doi: 10.1109/
JRPROC.1952.273898.

[7] Telecommunication Standardization Sector of ITU. ITU-T V.42 – Error-correcting pro-
cedures for DCEs using asynchronous-to-synchronous conversion. Tech. rep. Interna-
tional Telecommunication Union, Mar. 2002. url: https://www.itu.int/ITU-T/
recommendations/rec.aspx?rec=5692&lang=en.

[8] LZ77 - Wikipedia. Accessed: 2021-01-26. url: https://de.wikipedia.org/wiki/LZ77.

[9] C. E. Shannon. “A mathematical theory of communication.” In: The Bell System Technical
Journal 27.3 (July 1948), pp. 379–423. issn: 0005-8580. doi: 10.1002/j.1538-7305.
1948.tb01338.x.

19

https://doi.org/https://doi.org/10.1002/047174882X.ch5
https://doi.org/https://doi.org/10.1002/047174882X.ch5
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047174882X.ch5
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047174882X.ch5
https://onlinelibrary.wiley.com/doi/abs/10.1002/047174882X.ch5
https://onlinelibrary.wiley.com/doi/abs/10.1002/047174882X.ch5
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1952
https://arxiv.org/abs/0911.2284
http://arxiv.org/abs/0911.2284
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=5692&lang=en
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=5692&lang=en
https://de.wikipedia.org/wiki/LZ77
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Bibliography

[10] Tilo Strutz. Bilddatenkompression : Grundlagen, Codierung, Wavelets, JPEG, MPEG,
H.264. 3., aktualisierte und erweiterte Auflage. Wiesbaden: Vieweg, May 2005.

[11] The Open Group Base Specifications Issue 7. Accessed: 2021-01-21. 2018. url: https:
//pubs.opengroup.org/onlinepubs/9699919799/.

[12] J. Ziv and A. Lempel. “A universal algorithm for sequential data compression.” In: IEEE
Transactions on Information Theory 23.3 (May 1977), pp. 337–343. issn: 1557-9654. doi:
10.1109/TIT.1977.1055714.

20

https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://doi.org/10.1109/TIT.1977.1055714

	GZIP Compression
	Information Entropy and Huffman Trees
	Entropy Coding
	Huffman Coding

	Redundancy Elimination with LZ77
	Deflate Algorithm
	Inflate Algorithm
	GZIP File Format

	Bibliography

