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I. High-Level Synthesis with Xilinx
Accelerators

In this chapter, we explain in detail, how high-level synthesis (HLS) [10] is used to develop
hardware-accelerated software and discuss the fundamentals of the implementation of our Gzip
decoder. The general process varies depending on the manufacturer of the board. We focus
on accelerator cards developed by Xilinx Incorporated, one of the largest manufacturers for
programmable logic. Although the Gzip decoder was tested using an Alveo U250 board, the
shown process works for any device of the U-series.

We start by introducing some technical details of the U250 card and explaining the general
process of building and executing an FPGA-accelerated application. Thereafter, we go more
into detail and show, how the OpenCL API is used to program the host side in order to exchange
memory between CPU and FPGA RAM. We point out, how FPGA device binaries are built
using C++ as a kernel language.

We introduce some optimizations for hardware and software and show how to increase the
bandwidth of PCI Express (PCIe).

I 1. Technical Details of Alveo Accelerators

An Alveo U250 board is a PCIe accelerator card that contains several hardware resources. The
most important part is a Xilinx XCU250 UltraScale+ FPGA running exclusively on the Alveo
architecture. The FPGA utilizes Xilinx Stacked Silicon Interconnect (SSI) technology. The chip
consists of four programmable Super Logic Regions (SLR) and a unconfigurable static region.
The latter stores the Alveo shell, a memory layer that manages the hardware resources on the
chip.
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I 1. Technical Details of Alveo Accelerators

A shell is provided by Xilinx, which has to be flashed onto the card as an initial setup and serves
as a kind of an operating system for the board. The shell ships as two usual Linux packages:
The deployment shell is only for executing programs on the device, whereas the development
shell contains additional software that is needed to create binaries for the specific device.

According to the official data sheet [4, 1], each of the SLR are connected to 16 GByte of DDR4
memory with a maximum transfer rate of 64 Bit 2400 MTransfers per second and error correcting
code (ECC) DIMM for a total of 64 GBytes. A single SLR, its memory and its interface form
a so-called memory bank. Data transfers from the host side to board and vice versa are passed
through these global memory banks.

The device connects to 16 lanes of PCIe that can operate up to 8 GTransfers per second (gener-
ation 3). In addition, the device connects to two QSFP28 (Quad Amall Form-factor Pluggables)
connectors with associated clocks generated on the board.

Some additional technical details are presented in table I.1. An overview of the Alveo U250
board is shown in figure I.1.

Total electrical card load 225 Watt
Network interface 2× QSFP28
PCIe Interface Gen3 ×16
Look-up tables (LUT) 1728 K
Registers 3456 K
DSP slices 12 288
UltraRAM 1280
DDR total capacity 64 GBytes
DDR maximum data rate 2400 MTransfers/s
DDR total bandwidth 77 GBytes/s

Table I.1.: Technical details of an Alveo U250.
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I 2. Build and Execution Model
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Figure I.1.: Schematic of the Xilinx U250 accelerator card. The FPGA is a Xilinx XCU250 UltraScale+. It
consists of four similar Super Logic Regions (SLR) and a static region. The latter stores the
Alveo shell. Each SLR is attached to 16 GBytes DDR4 memory. The SL Region 0 contains
four GTY controllers, which are connected to up to 16 lanes of PCIe (generation 3). Two
additional GTY controller in SLR2 are attached to QSFP, which lead to a network interface.

I 2. Build and Execution Model

In order to build an FPGA application for Xilinx devices two crucial components are needed
in addition to the already mentioned shells.

An FPGA binary has to be compiled with the Xilinx specific v++ compiler, which ships as
part of the Vitis Unified Software Environment. This environment includes a large set of tools,
an eclipse based IDE and analyzers. Since these tools are only used to simplify programming
and have nothing to do with the build process itself, we will not go into detail here. For more
information see appendix ?? and ??.

The second component is the Xilinx Runtime (XRT). It consists of a vendor specific OpenCL
v1.2 library [3] and an associated platform. It has to be installed like a common Linux package,
since it loads a kernel module that manages communication between host application and Alveo
board over PCIe. Therefore, it is highly recommended to use only operating systems that are
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I 3. The OpenCL Runtime API

supported by Vitis.

The host side of the application manages FPGA memory and executes device binaries. It is
handled as any OpenCL application and can be compiled with any C or C++ compiler. The
only requirement for the compiler is to be able to link with the Xilinx Runtime (“xilinxopencl”).

The v++ compiler offers three modes:

• software emulation: The entire build process is completely emulated in software. The
program behaves no different from host-sided C++ code. The purpose is only to test
functional correctness.

• hardware emulation: A virtual FPGA is emulated in software with help of the Alveo
shell. The FPGA binary is executed inside that virtual environment. The purpose is
to test, if specific FPGA related features work as expected (see sec. I 4). Since this
process is extremely slow, it is not recommended to use this feature with large amount of
transferred data. Standard output cannot be used here, which makes debugging difficult.

• deployment: The FPGA binary is flashed onto the selected Alveo board. Only in this
case the FPGA is actually required. Even the compilation can be done entirely without
Xilinx hardware. Note that compiling device code can take several hours.

When the application is executed, an environment variable controls in which of the three modes
the OpenCL platform has to be loaded (see I 3). The variable XCL_EMULATION_MODE
must be set to hw_emu for hardware emulation or to sw_emu for software emulation. The
variable is also used in some Xilinx software to distinguish between the three modes at runtime.

I 3. The OpenCL Runtime API

The following explanation of the OpenCL API is strongly influenced by the SDAccel Pro-
grammers Guide [6]. Despite the fact that SDAccel was the predecessor of Vitis, the given
instructions are still valid. The main differences to a standard OpenCL introduction are the
focus on the FPGA perspective and the usage of the C++ Wrapper API [2]. The code examples
are real samples of our Gzip decompressor. Figure I.2 shows the general idea.
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I 3. The OpenCL Runtime API

XCU250 Memory

CPU Memory

MCU

PCIe
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Figure I.2.: The OpenCL programming model.
blue: read from and write to memory
red: FPGA allocations, read from FPGA and store into CPU memory (and vice versa)
green: flash binary, execute function

The host program is compiled and executed as usual on the CPU. CPU and FPGA can access
their own memory respectively (blue), but only the CPU can instruct the memory control unit
(MCU) to allocate buffers in the FPGA memory. It is not possible to allocate memory in
device code. The CPU writes specific data from its own memory via PCIe to the board where
it is passed via AXI interface from FPGA to memory. Vice versa, the CPU can also read
specific data form device memory via PCIe and store it into host memory. The CPU instructs
the Xilinx Runtime to flash a separate compiled device binary onto the FPGA and execute a
specific function with certain input parameters (green). When specifying a buffer as input, the
FPGA can operate on it as if it were a normal C array.

The rest of the section explains in detail the necessary requirements of a working OpenCL
application. The interaction between the different OpenCL classes is shown in figure I.3 in
UML notation [5].
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I 3. The OpenCL Runtime API

Figure I.3.: Interaction of OpenCL classes in UML notation [3][5]

OpenCL is a specified interface for heterogeneous computing. A manufacturer has to implement
the details of the API and provide additional software that communicates with OS kernel
modules. An OpenCL implementation is called platform. The first step is to load the specific
platform that is associated with the desired device:

std : : vector<c l : : Platform> plat fo rms ;
2 c l : : Platform : : get (&plat fo rms ) ;

4 s i z e_t i ;
f o r ( i = 0 ; i < plat fo rms . s i z e ( ) ; i++)

6 {
std : : s t r i n g platformName = plat form [ i ] . g e t In fo <CL_PLATFORM_NAME>(&e r r ) ;

8 i f ( platformName == ” Xi l i nx ” ) break ;
}

10 i f ( i == plat fo rms . s i z e ( ) )
std : : c e r r << ” Error : Fa i l ed to f i n d Xi l i nx plat form ” << std : : endl ;

12

Listing I.1: Platforms

The first function call instructs the OpenCL loader to query all platforms on the system at
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I 3. The OpenCL Runtime API

runtime. Each platform has to provide certain meta information. Within the loop the platform
with the name “Xilinx” is searched. It is technically possible to have more platforms associated
with the same device. Since there is only one Xilinx platform, a second occurrence is probably
an artifact of an incomplete update. The Xilinx Runtime should be reinstalled to solve the
problem. Note that most of the API functions return an error value in form of an tabulated
negative integer (zero if success). In the following code examples this value is named as “err”. If
a function already has a return value, the last value is a pointer to an error code, which points
to the desired information after the function call.

Each platform object provides a function that queries all devices associated with it:
std : : vector<c l : : Device> dev i c e s ;

2 plat form [ i ] . ge tDev ices (CL_DEVICE_TYPE_ACCELERATOR, &dev i c e s ) ;
c l : : Device dev i c e = dev i c e s [ 0 ] ;

4

Listing I.2: Devices

An FPGA usually shows up as an “accelerator”. The function call searches for all Xilinx devices
and stores them in a standard vector. Since we assume that only one device exists, we can use
the first entry of the vector as the desired device.

The next step assumes that a specific binary compiled for the desired device is available at the
path “binaryFile”:

unsigned f i l e B u f S i z e ;
2 char ∗ f i l e B u f = read_binary_f i l e ( b inaryF i l e , f i l e B u f S i z e ) ;

c l : : Program : : B ina r i e s b ins {{ f i l e B u f , f i l e B u f S i z e }} ;
4

Listing I.3: Binaries

This step reads a file from disk as C string. Note that the file has to be read once in order to get
the full size of a file. Thereafter, a character array can be dynamically allocated an filled. The
file size cannot be deduced from the array without further computation and has to be stored as
an extra variable. An object is created out of that binary. Note that “bins” is actually created
with a list of pairs of strings an corresponding size.

The device has to be linked with the OpenCL context and a program object has to be created
within it. The context is used as a handle for the entire application, while the program object
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I 3. The OpenCL Runtime API

is used only for the part that is executed on the device:
c l : : Context context ( dev ice s , NULL, NULL, NULL, &e r r ) ;

2 c l : : Program program ( context , dev ice s , bins , NULL, &e r r ) ;
c l : : CommandQueue q ( context , dev i c e [ 0 ] , CL_QUEUE_PROFILING_ENABLE, &e r r ) ) ;

4

Listing I.4: OpenCL program handles

Note that both constructors accept a list of devices. Any device from the previous step could
be provided here, but for each of them one separate binary in “bins” is needed respectively.
Since we do not need extra properties or callbacks for the context, the three corresponding
input parameters are set to NULL. Optionally, the binary sizes can be resized to match the
actual length. Since we already ensured matching sizes in the previous step, the correspond-
ing parameter in the program constructor is also set to NULL. The third API call creates a
command queue associated with exactly one device. Such a queue can be seen as a wait list
of device-related instructions. A new instruction, like reading/writing data or executing device
functions, has to be lined up in a command queue.

Before data can be moved, a buffer on the device has to be created. The size in bytes and the
access rights have to be specified. In this case, the buffer can only be read on the device, but
never written. The additional input that is set to NULL can be ignored for the moment:

c l : : Bu f f e r buf fe r_input ( context , CL_MEM_READ_ONLY,
2 c l : : s i ze_type(<size_in_bytes >) , NULL, &e r r ) ;

. . .
4

e r r = q . enqueueWriteBuffer ( buf fer_input , CL_FALSE, 0 ,
6 input_length , input_pointer ) ;

e r r = q . enqueueReadBuffer ( buffer_output , CL_FALSE, 0 ,
8 output_length , output_pointer ) ;

. . .
10

Listing I.5: Buffer creation and memory copies

After the creation of the buffer object, memory located at “input_pointer” of size “input_length”
in bytes is written to the global memory on the board. The input 0 denotes an offset in bytes.
This is the first command of the API that can be executed asynchronously. This means, that
the CPU only submits the instruction to the queue and immediately continues with the subse-
quent commands (non-blocking). The advantage here is, that the CPU does not waste time on
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I 3. The OpenCL Runtime API

waiting for the runtime to signal completion. Thus, the buffers can be read and written concur-
rently via PCIe (see I 6). If the command has to be executed synchronously, the CL_FLASE
has to be replaced with CL_TRUE. A buffer can be read in the same manner. Since read and
write command in the example are called subsequently, the user has to take care of the syn-
chronization on the host side with the help of OpenCL events (more at the end of the section)
if a data race needs to be avoided. Buffers are consistent over multiple (different) function calls
on the device.

Finally, the kernel object is created in order to execute a function on the device. From the
program object, which can consist of an arbitrary number of device functions, a specific one
has to be selected by its name:

std : : s t r i n g function_name = ” . . . ” ;
2 c l : : Kernel k e r n e l _ i n f l a t e ( program , function_name . c_str ( ) , &e r r ) ;

s i z e_t narg = 0 ;
4 e r r = k e r n e l _ i n f l a t e . setArg ( narg++, buf fe r_input ) ;

. . .
6 e r r = q . enqueueTask ( k e r n e l _ i n f l a t e ) ;

Listing I.6: Kernel execution

The naming conventions of kernels are explained in detail in the documentation of the v++
compiler [9]. The arguments of the kernel have to be set according to the signature of the
device function. The execution of the kernel is queued into the command queue. The OpenCL
API usually expects device code to be written in the OpenCL kernel language, in which each
command is automatically executed in parallel over a specified number of threads. We are
writing kernels in C and the code runs in parallel on hardware level. The kernel must be
executed by using the “enqueueTask” function. This function is usually used to execute an
OpenCL kernel with exactly one thread.

A kernel execution is always non-blocking. At the latest by now manual synchronization is
needed. Otherwise, the output is possibly read before the computation is completed. In the
following example two buffers are written to the device:

f o r ( . . . )
2 {

c l : : Event write1 , write2 , exec ;
4 e r r = q . enqueueWriteBuffer ( . . . , NULL, wr i t e1 ) ;

e r r = q . enqueueWriteBuffer ( . . . , NULL, wr i t e2 ) ;

10



I 3. The OpenCL Runtime API

6
//some host code

8
e r r = q . enqueueTask ( k e r n e l _ i n f l a t e , { write1 , wr i t e2 } , exec ) ;

10 e r r = q . enqueueReadBuffer ( . . . , { exec } , NULL) ;

12 //some host code
}

14 q . f i n i s h ( ) ;

Listing I.7: Event synchronization

A queued command can be associated with a specific OpenCL event and delayed until a certain
number of events are triggered. In this example, the write commands are connected to the
events “write1” and “write2” respectively. When the kernel is queued, the execution on the
device waits until these events are completed. Therefore, the device waits until both buffers
are ready. The read command is immediately queued, but the copy instruction is delayed until
the computation on the device is done. This approach can be used to maintain functional
correctness despite using asynchronous commands. Between these commands some additional
commands can be computed concurrently on the host side, while the device is occupied.

Also, the commands are called rapidly in a loop. This is often used when a large problem has
to be divided in smaller (independent) portions. Because of the asynchronous calls, read and
write operations may overlap possibly utilizing the full bandwidth of PCIe.

Additionally, OpenCL events can be used to get specific profiling information if the command
queue was created with the CL_QUEUE_PROFILING_ENABLE option. This is useful for
investigating the performance of the application:

unsigned long long i n t time_start , time_end ;
2 e r r = exec . g e t P r o f i l i n g I n f o (CL_PROFILING_COMMAND_START, &time_start ) ;

e r r = exec . g e t P r o f i l i n g I n f o (CL_PROFILING_COMMAND_END, &time_end ) ;
4

double nanoSeconds = time_end − time_start ;
6 std : : cout << ”OpenCl ke rne l execut ion time i s : ”

<< nanoSeconds / 1000000.0 << ” m i l l i s e c o n d s \n” ;
8

Listing I.8: Time measurement
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I 4. C++ Kernels

In this example, the recorded CPU times in nanoseconds between the start and the return of the
command associated with the event “exec” are retrieved from the event. The difference yields
the computation time. The times for queuing (CL_PROFILING_COMMAND_ENQUEUE)
and submission (CL_PROFILING_COMMAND_SUBMIT) to the queue can also be queried
to compute the OpenCL overhead.

I 4. C++ Kernels

A kernel is a compute-intensive part of the algorithm that is to be accelerated on the FPGA.
Kernels can be written in hardware description language1, OpenCL, C or a subset of C++.
OpenCL as a kernel language is mainly used for GPU computation and does not yield a real
benefit here. Since the code is compiled into hardware description either way, we focus on
high-level synthesis with C++. Therefore, we need to write kernels as usual C++ functions,
which have to be put in a separate source file, since they are compiled independently from the
host code. A name mangling issue will occur if the host code is written in C and device code
in C++. To avoid this issue, the “extern ”C”” linkage is wrapped around the kernel function
declaration. The functions can be declared in a header file. Large data processed by the kernel
is transferred through the global memory banks on the board. The host machine copies data
to one global memory bank or more. Thereafter, the kernel can access the data from these
memory banks. The resulting data is transferred back also through the global memory banks.
Compiler pragma statements are used to declare the interfaces connecting to the memory banks
in both directions inside the kernel function.

extern ”C” {
2 void fpga_uncompress ( unsigned char ∗ source , unsigned char ∗ dest ,

unsigned i n t s ca l a r , . . . )
4 {

#pragma HLS INTERFACE m_axi port=source o f f s e t=s l a v e bundle=gmem0
6 #pragma HLS INTERFACE m_axi port=dest o f f s e t=s l a v e bundle=gmem1

. . .
8 #pragma HLS INTERFACE m_axi l i te port=s c a l a r bundle=c o n t r o l

#pragma HLS INTERFACE ap_ctrl_chain port=return bundle=c o n t r o l
10 }}

Listing I.9: Kernel function

1VHDL, Verilog or a mixture of both
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I 5. Optimization Strategies

The kernels running on the FPGA can have one or more memory interfaces. The connection
from the global memory banks to those memory interfaces are configurable. There are three
data interfaces in the example above. The inputs “source” and “dest” are connected to the
global memory bank by using the pragma “HLS INTERFACE m_axi”. The “bundle” parameter
specifies the name of the port. The compiler will create a port for each unique bundle name.

The bandwidth and throughput of the kernel can be increased by creating multiple ports using
different bundle names. In the example from above, the bundle attribute is used to create
the ports “gmem0” and “gmem1”. Since both inputs will be accessed through different ports,
the kernel is able to accesses them in parallel, potentially improving the throughput of the
kernel. In order to increase memory bandwidth, the ports have to be connected to two different
memory banks. This can be achieved during the v++ linking stage using the “–sp” switch.
The exact procedure with all available options is described in the Vitis Compiler Command
documentation [9].

Scalar inputs are directly loaded from the host machine and do not need to be copied by
command queue instructions. These inputs will not change on the host side if modified by the
kernel. The input “scalar” is specified using the “s_axilite” interface. These data inputs do
not use global memory banks. Note that the return type of a kernel is always “void”. When a
writable scalar input is needed that can be retrieved from the host after a kernel call, e. g. an
error code, a one-component array on the host can be attached to a global memory bank.

By connecting the return value to the “ap_ctrl_chain” interface we allow for pipelining the
kernel execution on the host side. This will lead in conjunction with page migration to a much
higher throughput if the kernel is pipelined at loop level (see I 5).

I 5. Optimization Strategies

The Xilinx Runtime allocates the memory space in 4K boundary for internal memory man-
agement. If the host memory pointer is not aligned to a page boundary, the Xilinx Runtime
performs an extra memory copy to make it aligned. Therefore, the host memory pointer should
be aligned with the 4K boundary to avoid unnecessary copies. The simplest way in C++ to
allocate aligned memory is with help of a standard vector and a custom allocator.
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I 5. Optimization Strategies

template <typename T>
2 s t r u c t a l i g n e d _ a l l o c a t o r

{
4 us ing value_type = T;

T∗ a l l o c a t e ( std : : s i z e_t num)
6 {

void ∗ ptr = n u l l p t r ;
8 i f ( posix_memalign(&ptr , 4096 ,num∗ s i z e o f (T) ) ) throw std : : bad_alloc ( ) ;

r e turn r e in t e rp r e t_ca s t <T∗>( ptr ) ;
10 }

12
void d e a l l o c a t e (T∗ p , std : : s i z e_t num)

14 {
f r e e (p) ;

16 }
} ;

18
. . .

20
std : : vector<unsigned int , a l i gned_a l l o ca to r <unsigned int >> input ( s i z e ) ;

22 input . f i l l ( . . . ) ;

24 c l : : Bu f f e r buf fe r_input ( context , CL_MEM_USE_HOST_PTR | CL_MEM_READ_WRITE,
c l : : s i ze_type ( s i z e ∗ s i z e o f ( unsigned i n t ) ) , s i z e . data ( ) , &e r r )

26
e r r = q . enqueueMigrateMemObjects ({ buf fer_tag } , 0) ;

28

Listing I.10: Page-aligned memory allocation

A standard vector can be created and used as usual with help of this specific allocator.

Another optimization in this example is page migration. With the option

CL_MEM_USE_HOST_PTR

a buffer can be wrapped around the data of a vector. The “data()” member function of the
vector class returns the pointer to the underlying array. The command “enqueueMigrateMem-
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I 5. Optimization Strategies

Objects” takes a list of buffers and migrates them to the first2 device associated with the queue
object. This is useful for software pipelining if the host is executing the same kernel multiple
times. The memory copy for the next kernel call can happen when the device is still operating
on the given data. The kernel mus have been compiled with the return port connected to the
“ap_ctrl_chain” interface (see I 4).

When implementing data decompression, the following problem will occur: A block has to
be decompressed on the device, but its size is not known a priori. Therefore, a far too large
buffer has to be allocated on the device. The host can still read the output buffer, but by
using “enqueueMigrateMemObjects” the entire buffer and not only the uncompressed data is
copied. The solution is to write the size as an additional output of the kernel. Afterwards, “en-
queueReadBuffer” can be used twice. First, the size of the data is read, then the exact amount
of data can be retrieved from the buffer. Since “enqueueMigrateMemObject” is recommended
over “enqueueReadBuffer”, a sub-buffer can be used to further increase the throughput. In
the following example, a sub-buffer of the specific size is created in order to migrate a certain
subset of the buffer “buffer_output” to the host:

e r r = q . enqueueMigrateMemObjects ({ output_length } ,
2 CL_MIGRATE_MEM_OBJECT_HOST) ;

4 _cl_buffer_region sub_buffer_output_region {0 , output_length } ;
c l : : Bu f f e r sub_buffer_output =

6 buffer_output . c reateSubBuf f e r (CL_MEM_WRITE_ONLY,
CL_BUFFER_CREATE_TYPE_REGION,

8 &sub_buffer_output_region ,
&e r r ) ;

10
e r r = q . enqueueMigrateMemObjects ({ sub_buffer_output } ,

12 CL_MIGRATE_MEM_OBJECT_HOST) ;

Listing I.11: Sub-buffer creation

The creation of the sub-buffer is a member function of the buffer object and needs a pointer
to a sub-buffer region as input. The sub-buffer region is a data structure that consists of an
offset and a length. The option “CL_BUFFER_CREATE_TYPE_REGION” is the only valid
input and is an artifact of the API specification.

2The numbering starts with 0.
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One advantage of an FPGA is its adaptability. The Vitis environment provides device type
definitions for arbitrary integer and fixed point numbers.

#inc lude <ap_int . h>
2 #inc lude <ap_fixed . h>

4 . . .

6 ap_int<9> var1 // 9 b i t s igned i n t e g e r
ap_uint<10> var2 // 10 b i t unsigned i n t e g e r

8
ap_fixed <18 ,6 ,AP_RND> my_type ; // s igned 18− b i t v a r i a b l e with 6 b i t s

10 // r e p r e s e n t i n g the i n t e g e r va lue above
// the binary point , rounding to p lus

12 // i n f i n i t y

Listing I.12: Arbitrary data types

Most optimizations can be achieved with help of specific compiler directives. These statements
are documented in the Xilinx HLS Pragma Guide [7]. The v++ compiler generates device code
for the specified kernels and for all functions that are called inside them. Inlining a function
instructs the compiler to embed the resulting device code directly into the upper function for
each call. This will result in a higher throughput, since concurrent calls of the function do not
need to be serialized. On the other hand, this will increase the hardware requirements. The
compiler automatically inlines functions that are expected to consume few hardware resources.
Inlining can be enforced by applying the “INLINE” pragma to the body of the function:

void add ( i n t a , i n t b)
2 {

#pragma HLS INLINE
4 . . .

}
6

Listing I.13: Function inlining

This approach is advisable if a relatively large function will be called more times concurrently.

The most important optimazation is loop pipelining. Pipelining means that subsequent loop
iterations overlap and run concurrently. By default, a iteration can only start when the previous
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iteration has finished. The pragma statement instructs the compiler to optimize the loop for
an initiation interval (II) of 1. The initiation interval is the number of cycles it takes to start
the next iteration:

vadd : f o r ( i n t i = 0 ; i < 10 ; i++)
2 {

#pragma HLS PIPELINE I I=1
4 c [ i ] = a [ i ] + b [ i ] ;

}
6

Listing I.14: Loop pipelining

Assuming that the addition of two vector elements takes 3 cycles, the entire loop would take
30 cycles to finish if no optimizations are applied. With pipelining the number reduces to 12.
This is possible, since there are no data dependencies inside the loop. The most promising
approach when handling loops is to pipeline large loops first and then unroll nested loops with
small loop bodies and limited iterations. Nested loops are automatically unrolled by default.

Unrolling a loop instructs the compiler to create hardware for each particular iteration allowing
them to run in parallel. Naturally, a fully unrolled loop can only be achieved if the exact
number of iterations is specified at compile time. A loop with dynamic bound can still be
unrolled partially:

sum : f o r ( i n t i = 0 ; i < 4 ; i++)
2 {

#pragma HLS UNROLL f a c t o r=2
4 sum += arr [ i ] ;

}
6

Listing I.15: (Partially) unrolled loops

The additional “factor=2” is equivalent of running the loop body twice concurrently for half
as many iterations. This approach requires excessive amounts of logic resources. Therefore,
it is advisable to unroll loops that have a small body or a low number of iterations. In this
example, a data dependency, i. e. a data race when reading and writing “sum” concurrently,
occurs. Fortunately, the compiler can handle this simple case. Resolving loop dependencies
requires not only understanding of the logic, but also of how loops are synthesized in hardware.
Therefore, a general approach cannot be given here. Resolving dependencies requires always a
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case-by-case analysis. For example, a loop in which an conditional statement splits the body
into two can neither be pipelined nor unrolled.

If the pipeline pragma is applied to a nested loop, the compiler attempts to flatten the loops,
i. e. creating a single loop. This can only be achieved if the following three requirements are
met:

• Only the inner loop has a loop body.

• There is no logic or operations specified between the loop declarations.

• The inner loop bound must be constant.

When the outer bound is also constant, the loop is said to be perfectly nested, otherwise semi-
perfectly. The following example shows a iteration over each element of a two dimensional
object such as a matrix or an image. The loop is perfectly nested. If the outer bound is
replaced with a variable, the loop would be semi-perfectly nested:

ROW: f o r ( i n t i = 0 ; i< 10 ; i++)
2 {

COL: f o r ( i n t j = 0 ; j< 20 ; j++)
4 {

6 #pragma HLS PIPELINE
image [ i ] [ j ] = . . .

8 }
}

10

Listing I.16: Nested loops

Nesting loops helps the compiler to increase the level of parallelism.

Note that each of the preceding loops where given names right in front of the declaration like
“ROW”. When the compilation is finished, a report is created that documents how each of
them were optimized. The name helps identifying the loops in the report when using the Vitis
Analyzer. More information is given in appendix ??.
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I 6. Bandwidth of PCIe

I 6. Bandwidth of PCIe

PCIe Gen3 ×16 has a maximum physical bandwidth of 15 754 GBytes per second [8]. The
overhead induced by the 128b/130b coding (130 bits are needed to transfer 128 bits of data) is
already excluded. However, due to protocol instructions and addressing, which occupy some of
the bandwidth, the resulting throughput is much smaller. PCIe utilizes dual simplex technol-
ogy. This allows signals to pass in both directions simultaneously. In contrast to full duplex
technology, dual simplex provides two distinct channels for both directions. Therefore, the
throughput can only be maximized by reading and writing data concurrently.

The actual bandwidth of PCIe when data is transferred to a Xilinx device using the Xilinx
Runtime must be evaluated. We introduce three simple benchmarks. In the first one we copy
some data to the device and increase the size in bytes exponentially. Additionally, we divide
the data in different buffers of the same size and transport them concurrently to the device. We
measure the time it takes for the command queue to finish, excluding the time for setups and
buffer creation. We do so 50 times each and plot the mean of the evaluated throughput against
the data size (figure I.4). We use the standard deviation as error bars. From this benchmark
we can conduct three important things. Large buffers are in general better than small buffers
and dividing a given amount of data into fewer buffers increases the throughput. A very small
number of buffers may perform good on average, but the throughput is far less predictable.
The average throughput is approximately 6.5 GBytes per second.
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Figure I.4.: Throughput t when data of size s is transferred to the device. The data is divided in different
buffers of the same size. Each point is the mean of 50 independent measurements with the
standard deviation as errors. Large buffers are better than small buffers. Dividing a given
amount of data into fewer buffers increases the throughput. A very small number of buffers
performs good on average, but the throughput is far less predictable. The average throughput
is ≈ 6.5 GBytes per second.

In the second benchmark we copy the buffers to the device and measure the time it takes to
be transported back to the host. Since upstream and downstream behaved very similar, we do
not provide the data here.

In the third benchmark we make use of the asynchronous behavior of the command queues to
transfer data from and to the host concurrently, i. e. we perform the first two benchmarks at the
same time and double the amount of data on the x-axis (figure I.5). We could actually proof,
that upstream and downstream can happen concurrently, thus almost doubling the throughput
to approximately 13.5 GBytes per second on average, but also increasing the errors.

Since even in the best case the overall throughput is far below the maximum bandwidth of
a memory lane in one memory bank (19 GBytes) per second, it is not needed to evaluate
additional cases in which the buffers are connected to more than one bank, unless the data size
is larger than its maximum capacity of 16 GBytes .
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Figure I.5.: Throughput t when data of size s/2 is transferred to and from the device concurrently. Upstream
and downstream can happen concurrently, but the errors increase. The average throughput is
≈ 13.5 GBytes per second.
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